


NORMAS MÁS UTILIZADAS EN MOTORES

Que significa DIN / MEC

Corresponde a normalizaciones internacionales (IEC) que regulan las dimensiones de los motores eléctricos. Cada potencia de motor corresponde a una medida de carcasa (frame), ej.: MEC 71, MEC 80, MEC 90S, MEC 90L, etc. Existen otras normas como NEMA y GHOST, pero estas son utilizadas en USA y Rusia respectivamente.

En las tablas de dimensiones deberemos revisar por tamaño y tendremos todas las medidas de los motores, diámetro y largo de eje, altura – ancho y largo del motor, dimensiones de las bases etc. (generalmente expresadas en mm)

Algunas medidas que pueden variar entre diferentes marcas, pero hay otras que se mantienen permanentes y que corresponden a las normas internacionales: altura de la base al centro del eje *Ej. MEC 71, altura desde la base al centro del eje 71 MM.*, diámetro, largo y dimensiones de la chaveta, dimensiones de los flanches o bridas de acoplamiento.

Ej.:

TYPE	Α	AA	AB	В	BB	С	Н	НА	HD	K	L	D	Е	F	GA
71	112	30	142	90	105	35	71	8	185	7	247	14	30	5	16
80	125	34	151	100	133	26	80	10	204	10	281	19	40	6	21.5
90 S	140	34	166	100	133	32	90	10	223	10	313	24	50	8	27
90 L	140	34	166	125	158	32	90	10	223	10	333	24	50	8	27
100	160	37	190	140	180	33	100	12	244	12	369	28	60	8	31
112	190	40	220	140	190	25	112	14	250	12	419	28	60	8	31

Que significa: IP

Existen motores protegidos y motores blindados. Al ser blindados tienen mayor protección al ingreso de partículas al bobinado, se clasifican de la siguiente manera:

	Sólidos	Líquidos
IP 44	Cuerpos sólidos sobre 1 mm de	Agua salpicada desde todas las
	diámetro	direcciones
IP 54	Parcialmente contra polvo	Agua salpicada desde todas las
		direcciones
IP 55	Parcialmente contra polvo	Agua disparada a presión
IP 65	Totalmente contra polvo	Agua disparada a presión

Que significa Clase:

Temperatura ambiente Máximo 40°C								
Clase	Sobre temperatura							
Е	120°C							
В	130°C							
F	155°C							
Н	180°C							

NOTA: los motores trabajan calientes, muchas personas reclaman que se calientan, sobre todo en verano un motor normalmente trabaja entre 30°C y 50°C; lo importante es el amperaje, si el amperaje de trabajo corresponde o es inferior al indicado en placa, el motor está funcionando correctamente y bien calculado.

FLANCHES, FLANGES O BRIDAS:

Se refiere a la tapa delantera del motor, la tradicional se llama B3, existen B14 (similar a B3 con perforaciones para acople en el interior) y B5 que corresponde a una tapa de mayor dimensión al motor y perforaciones de acoplamiento exterior. Se usan para acople directo a una máquina y para acoplar reductores de velocidad.

POLOS y R.P.M.:

Técnicamente los motores funcionan por polos y estos son los que determinan la velocidad de giro o R.P.M. normalmente por ejemplo se habla de 1.400 rpm que en realidad puede ser desde 1.300 y 1.500 que corresponden a un motor de 4 polos.

POLOS	R.P.M. Teóricas		
2	3000		
4	1500		
6	1000		

FORMULA:

60seg. X 50 Hz (ciclos) = velocidad Polos

(Menos pérdida de velocidad por roce)
Obviamente si no tenemos los 50 Hz, variará la velocidad final.

NOTA: los motores más usados son de 2 y 4 polos, Elan S.A. trabaja este tipo de motores únicamente ya que son los más requeridos en el mercado nacional.